Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Building automated vandalism detection tools for Wikidata (1703.03861v1)

Published 10 Mar 2017 in cs.IR and cs.CY

Abstract: Wikidata, like Wikipedia, is a knowledge base that anyone can edit. This open collaboration model is powerful in that it reduces barriers to participation and allows a large number of people to contribute. However, it exposes the knowledge base to the risk of vandalism and low-quality contributions. In this work, we build on past work detecting vandalism in Wikipedia to detect vandalism in Wikidata. This work is novel in that identifying damaging changes in a structured knowledge-base requires substantially different feature engineering work than in a text-based wiki like Wikipedia. We also discuss the utility of these classifiers for reducing the overall workload of vandalism patrollers in Wikidata. We describe a machine classification strategy that is able to catch 89% of vandalism while reducing patrollers' workload by 98%, by drawing lightly from contextual features of an edit and heavily from the characteristics of the user making the edit.

Citations (40)

Summary

We haven't generated a summary for this paper yet.