Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Automatic Music Highlight Extraction using Convolutional Recurrent Attention Networks (1712.05901v1)

Published 16 Dec 2017 in cs.LG, cs.MM, cs.SD, and stat.ML

Abstract: Music highlights are valuable contents for music services. Most methods focused on low-level signal features. We propose a method for extracting highlights using high-level features from convolutional recurrent attention networks (CRAN). CRAN utilizes convolution and recurrent layers for sequential learning with an attention mechanism. The attention allows CRAN to capture significant snippets for distinguishing between genres, thus being used as a high-level feature. CRAN was evaluated on over 32,000 popular tracks in Korea for two months. Experimental results show our method outperforms three baseline methods through quantitative and qualitative evaluations. Also, we analyze the effects of attention and sequence information on performance.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.