Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Backpropagation generalized for output derivatives (1712.04185v1)

Published 12 Dec 2017 in cs.NE

Abstract: Backpropagation algorithm is the cornerstone for neural network analysis. Paper extends it for training any derivatives of neural network's output with respect to its input. By the dint of it feedforward networks can be used to solve or verify solutions of partial or simple, linear or nonlinear differential equations. This method vastly differs from traditional ones like finite differences on a mesh. It contains no approximations, but rather an exact form of differential operators. Algorithm is built to train a feed forward network with any number of hidden layers and any kind of sufficiently smooth activation functions. It's presented in a form of matrix-vector products so highly parallel implementation is readily possible. First part derives the method for 2D case with first and second order derivatives, second part extends it to N-dimensional case with any derivatives. All necessary expressions for using this method to solve most applied PDE can be found in Appendix D.

Citations (9)

Summary

We haven't generated a summary for this paper yet.