Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Elements of contemporary mathematical theory of dynamical chaos. Part 1. Pseudohyperbolic attractors (1712.04032v1)

Published 11 Dec 2017 in math.DS

Abstract: The paper deals with topical issues of modern mathematical theory of dynamical chaos and its applications. At present, it is customary to assume that dynamical chaos in finitedimensional smooth systems can exist in three different forms. This is dissipative chaos, the mathematical image of which is a strange attractor; conservative chaos, for which the entire phase space is a large "chaotic sea" with randomly spaced elliptical islands inside it; and mixed dynamics, characterized by the principal inseparability in the phase space of attractors, repellers and conservative elements of dynamics. In the present paper (which opens a cycle of three our papers), elements of the theory of pseudo-hyperbolic attractors of multidimensional maps are presented. Such attractors, as well as hyperbolic ones, are genuine strange attractors, but they allow the existence of homoclinic tangencies. We give a mathematical definition of a pseudo-hyperbolic attractor for the case of multidimensional maps, from which we derive the necessary conditions for its existence in the three-dimensional case, formulated using the Lyapunov exponents. We also describe some phenomenological scenarios for the appearance of pseudo-hyperbolic attractors of various types in one-parameter families of three-dimensional diffeomorphisms, we propose new methods for studying such attractors (in particular, a method of saddle charts and a modified method of Lyapunov diagrams). We consider also three-dimensional generalized Henon maps as examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube