Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Surrogate Models of Document Image Quality Metrics for Automated Document Image Processing (1712.03738v1)

Published 11 Dec 2017 in cs.CV

Abstract: Computation of document image quality metrics often depends upon the availability of a ground truth image corresponding to the document. This limits the applicability of quality metrics in applications such as hyperparameter optimization of image processing algorithms that operate on-the-fly on unseen documents. This work proposes the use of surrogate models to learn the behavior of a given document quality metric on existing datasets where ground truth images are available. The trained surrogate model can later be used to predict the metric value on previously unseen document images without requiring access to ground truth images. The surrogate model is empirically evaluated on the Document Image Binarization Competition (DIBCO) and the Handwritten Document Image Binarization Competition (H-DIBCO) datasets.

Citations (8)

Summary

We haven't generated a summary for this paper yet.