Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Sample Complexity for Stable Matrix Recovery (1712.01915v2)

Published 5 Dec 2017 in cs.IT and math.IT

Abstract: Tremendous efforts have been made to study the theoretical and algorithmic aspects of sparse recovery and low-rank matrix recovery. This paper fills a theoretical gap in matrix recovery: the optimal sample complexity for stable recovery without constants or log factors. We treat sparsity, low-rankness, and potentially other parsimonious structures within the same framework: constraint sets that have small covering numbers or Minkowski dimensions. We consider three types of random measurement matrices (unstructured, rank-1, and symmetric rank-1 matrices), following probability distributions that satisfy some mild conditions. In all these cases, we prove a fundamental result -- the recovery of matrices with parsimonious structures, using an optimal (or near optimal) number of measurements, is stable with high probability.

Summary

We haven't generated a summary for this paper yet.