Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Global existence and optimal decay estimates of strong solutions to the compressible viscoelastic flows (1711.11325v1)

Published 30 Nov 2017 in math.AP

Abstract: This paper is dedicated to the global existence and optimal decay estimates of strong solutions to the compressible viscoelastic flows in the whole space $\mathbb{R}n$ with any $n\geq2$. We aim at extending those works by Qian & Zhang and Hu & Wang to the critical $Lp$ Besov space, which is not related to the usual energy space. With aid of intrinsic properties of viscoelastic fluids as in \cite{QZ1}, we consider a more complicated hyperbolic-parabolic system than usual Navier-Stokes equations. We define "\emph{two effective velocities}", which allows us to cancel out the coupling among the density, the velocity and the deformation tensor. Consequently, the global existence of strong solutions is constructed by using elementary energy approaches only. Besides, the optimal time-decay estimates of strong solutions will be shown in the general $Lp$ critical framework, which improves those decay results due to Hu & Wu such that initial velocity could be \textit{large highly oscillating}.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.