Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Organized Behavior Classification of Tweet Sets using Supervised Learning Methods (1711.10720v1)

Published 29 Nov 2017 in cs.SI

Abstract: During the 2016 US elections Twitter experienced unprecedented levels of propaganda and fake news through the collaboration of bots and hired persons, the ramifications of which are still being debated. This work proposes an approach to identify the presence of organized behavior in tweets. The Random Forest, Support Vector Machine, and Logistic Regression algorithms are each used to train a model with a data set of 850 records consisting of 299 features extracted from tweets gathered during the 2016 US presidential election. The features represent user and temporal synchronization characteristics to capture coordinated behavior. These models are trained to classify tweet sets among the categories: organic vs organized, political vs non-political, and pro-Trump vs pro-Hillary vs neither. The random forest algorithm performs better with greater than 95% average accuracy and f-measure scores for each category. The most valuable features for classification are identified as user based features, with media use and marking tweets as favorite to be the most dominant.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Erdem Beğenilmiş (1 paper)
  2. Suzan Üsküdarlı (4 papers)