Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

#DebateNight: The Role and Influence of Socialbots on Twitter During the 1st 2016 U.S. Presidential Debate (1802.09808v3)

Published 27 Feb 2018 in cs.SI

Abstract: Serious concerns have been raised about the role of 'socialbots' in manipulating public opinion and influencing the outcome of elections by retweeting partisan content to increase its reach. Here we analyze the role and influence of socialbots on Twitter by determining how they contribute to retweet diffusions. We collect a large dataset of tweets during the 1st U.S. Presidential Debate in 2016 (#DebateNight) and we analyze its 1.5 million users from three perspectives: user influence, political behavior (partisanship and engagement) and botness. First, we define a measure of user influence based on the user's active contributions to information diffusions, i.e. their tweets and retweets. Given that Twitter does not expose the retweet structure - it associates all retweets with the original tweet - we model the latent diffusion structure using only tweet time and user features, and we implement a scalable novel approach to estimate influence over all possible unfoldings. Next, we use partisan hashtag analysis to quantify user political polarization and engagement. Finally, we use the BotOrNot API to measure user botness (the likelihood of being a bot). We build a two-dimensional "polarization map" that allows for a nuanced analysis of the interplay between botness, partisanship and influence. We find that not only social bots are more active on Twitter - starting more retweet cascades and retweeting more -- but they are 2.5 times more influential than humans, and more politically engaged. Moreover, pro-Republican bots are both more influential and more politically engaged than their pro-Democrat counterparts. However we caution against blanket statements that software designed to appear human dominates political debates. We find that many highly influential Twitter users are in fact pro-Democrat and that most pro-Republican users are mid-influential and likely to be human (low botness).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Marian-Andrei Rizoiu (62 papers)
  2. Timothy Graham (3 papers)
  3. Rui Zhang (1138 papers)
  4. Yifei Zhang (167 papers)
  5. Robert Ackland (3 papers)
  6. Lexing Xie (54 papers)
Citations (65)