Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Plug and Play Bench: Simplifying Big Data Benchmarking Using Containers (1711.09138v2)

Published 24 Nov 2017 in cs.DC

Abstract: The recent boom of big data, coupled with the challenges of its processing and storage gave rise to the development of distributed data processing and storage paradigms like MapReduce, Spark, and NoSQL databases. With the advent of cloud computing, processing and storing such massive datasets on clusters of machines is now feasible with ease. However, there are limited tools and approaches, which users can rely on to gauge and comprehend the performance of their big data applications deployed locally on clusters, or in the cloud. Researchers have started exploring this area by providing benchmarking suites suitable for big data applications. However, many of these tools are fragmented, complex to deploy and manage, and do not provide transparency with respect to the monetary cost of benchmarking an application. In this paper, we present Plug And Play Bench, an infrastructure aware abstraction built to integrate and simplify the deployment of big data benchmarking tools on clusters of machines. PAPB automates the tedious process of installing, configuring and executing common big data benchmark workloads by containerising the tools and settings based on the underlying cluster deployment framework. Our proof of concept implementation utilises HiBench as the benchmark suite, HDP as the cluster deployment framework and Azure as the cloud platform. The paper further illustrates the inclusion of cost metrics based on the underlying Microsoft Azure cloud platform.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.