Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient quantum circuit for singular value thresholding (1711.08896v2)

Published 24 Nov 2017 in quant-ph

Abstract: Singular value thresholding (SVT) operation is a fundamental core module in many mathematical models in computer vision and machine learning, particularly for many nuclear norm minimizing-based problems. We presented a quantum SVT (QSVT) algorithm which was used as a subroutine to address an image classification problem. This algorithm runs in $O\left[\log\left(pq\right)\right]$, an exponential speed improvement over the classical algorithm which runs in $O\left[poly\left(pq\right)\right]$. In this study, we investigate this algorithm and design a scalable quantum circuit for QSVT. In the circuit design, we introduce an adjustable parameter $\alpha$ to ensure the high probability of obtaining the final result and the high fidelity of actual and ideal final states. We also show that the value of $\alpha$ can be computed ahead of implementing the quantum circuit when the inputs of the QSVT algorithm, i.e. matrix ${\bf{A}}$ and constant $\tau$, are given. In addition, we propose a small-scale quantum circuit for QSVT. We numerically simulate and demonstrate the performance of this circuit, verifying its capability to solve the intended SVT. The quantum circuit for QSVT implies a tempting possibility for experimental realization on a quantum computer.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube