Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scaling limits of Cayley graphs with polynomially growing balls (1711.08295v2)

Published 22 Nov 2017 in math.GR, math.CO, math.GN, and math.MG

Abstract: Benjamini, Finucane and the first author have shown that if (G_n,S_n) is a sequence of Cayley graphs such that |S_nn|=O(nD|S_n|), then the sequence (G_n,d_{S_n}/n) is relatively compact for the Gromov-Hausdorff topology and every cluster point is a connected nilpotent Lie group equipped with a left-invariant sub-Finsler metric. In this paper we show that the dimension of such a cluster point is bounded by D, and that, under the stronger bound |S_nn|=O(nD), the homogeneous dimension of a cluster point is bounded by D. Our approach is roughly to use a well-known structure theorem for approximate groups due to Breuillard, Green and Tao to replace S_nn with a coset nilprogression of bounded rank, and then to use results about nilprogressions from a previous paper of ours to study the ultralimits of such coset nilprogressions. As an application we bound the dimension of the scaling limit of a sequence of vertex-transitive graphs of large diameter. We also recover and effectivise parts of an argument of Tao concerning the further growth of single set S satisfying the bound |Sn| < MnD|S|.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.