Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Neuron-level Selective Context Aggregation for Scene Segmentation (1711.08278v1)

Published 22 Nov 2017 in cs.CV

Abstract: Contextual information provides important cues for disambiguating visually similar pixels in scene segmentation. In this paper, we introduce a neuron-level Selective Context Aggregation (SCA) module for scene segmentation, comprised of a contextual dependency predictor and a context aggregation operator. The dependency predictor is implicitly trained to infer contextual dependencies between different image regions. The context aggregation operator augments local representations with global context, which is aggregated selectively at each neuron according to its on-the-fly predicted dependencies. The proposed mechanism enables data-driven inference of contextual dependencies, and facilitates context-aware feature learning. The proposed method improves strong baselines built upon VGG16 on challenging scene segmentation datasets, which demonstrates its effectiveness in modeling context information.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.