Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Non-Contextual Modeling of Sarcasm using a Neural Network Benchmark (1711.07404v1)

Published 20 Nov 2017 in cs.CL

Abstract: One of the most crucial components of natural human-robot interaction is artificial intuition and its influence on dialog systems. The intuitive capability that humans have is undeniably extraordinary, and so remains one of the greatest challenges for natural communicative dialogue between humans and robots. In this paper, we introduce a novel probabilistic modeling framework of identifying, classifying and learning features of sarcastic text via training a neural network with human-informed sarcastic benchmarks. This is necessary for establishing a comprehensive sentiment analysis schema that is sensitive to the nuances of sarcasm-ridden text by being trained on linguistic cues. We show that our model provides a good fit for this type of real-world informed data, with potential to achieve as accurate, if not more, than alternatives. Though the implementation and benchmarking is an extensive task, it can be extended via the same method that we present to capture different forms of nuances in communication and making for much more natural and engaging dialogue systems.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.