Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudo-positive regularization for deep person re-identification (1711.06500v1)

Published 17 Nov 2017 in cs.CV

Abstract: An intrinsic challenge of person re-identification (re-ID) is the annotation difficulty. This typically means 1) few training samples per identity, and 2) thus the lack of diversity among the training samples. Consequently, we face high risk of over-fitting when training the convolutional neural network (CNN), a state-of-the-art method in person re-ID. To reduce the risk of over-fitting, this paper proposes a Pseudo Positive Regularization (PPR) method to enrich the diversity of the training data. Specifically, unlabeled data from an independent pedestrian database is retrieved using the target training data as query. A small proportion of these retrieved samples are randomly selected as the Pseudo Positive samples and added to the target training set for the supervised CNN training. The addition of Pseudo Positive samples is therefore a data augmentation method to reduce the risk of over-fitting during CNN training. We implement our idea in the identification CNN models (i.e., CaffeNet, VGGNet-16 and ResNet-50). On CUHK03 and Market-1501 datasets, experimental results demonstrate that the proposed method consistently improves the baseline and yields competitive performance to the state-of-the-art person re-ID methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.