Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constrained Deep Metric Learning for Person Re-identification (1511.07545v1)

Published 24 Nov 2015 in cs.CV

Abstract: Person re-identification aims to re-identify the probe image from a given set of images under different camera views. It is challenging due to large variations of pose, illumination, occlusion and camera view. Since the convolutional neural networks (CNN) have excellent capability of feature extraction, certain deep learning methods have been recently applied in person re-identification. However, in person re-identification, the deep networks often suffer from the over-fitting problem. In this paper, we propose a novel CNN-based method to learn a discriminative metric with good robustness to the over-fitting problem in person re-identification. Firstly, a novel deep architecture is built where the Mahalanobis metric is learned with a weight constraint. This weight constraint is used to regularize the learning, so that the learned metric has a better generalization ability. Secondly, we find that the selection of intra-class sample pairs is crucial for learning but has received little attention. To cope with the large intra-class variations in pedestrian images, we propose a novel training strategy named moderate positive mining to prevent the training process from over-fitting to the extreme samples in intra-class pairs. Experiments show that our approach significantly outperforms state-of-the-art methods on several benchmarks of person re-identification.

Citations (39)

Summary

We haven't generated a summary for this paper yet.