Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Semantic Relatedness using Global Relation Vectors (1711.05294v1)

Published 14 Nov 2017 in cs.CL

Abstract: Word embedding models such as GloVe rely on co-occurrence statistics from a large corpus to learn vector representations of word meaning. These vectors have proven to capture surprisingly fine-grained semantic and syntactic information. While we may similarly expect that co-occurrence statistics can be used to capture rich information about the relationships between different words, existing approaches for modeling such relationships have mostly relied on manipulating pre-trained word vectors. In this paper, we introduce a novel method which directly learns relation vectors from co-occurrence statistics. To this end, we first introduce a variant of GloVe, in which there is an explicit connection between word vectors and PMI weighted co-occurrence vectors. We then show how relation vectors can be naturally embedded into the resulting vector space.

Citations (4)

Summary

We haven't generated a summary for this paper yet.