Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A normalized gradient flow method with attractive-repulsive splitting for computing ground states of Bose-Einstein condensates with higher-order interaction (1711.02506v2)

Published 3 Nov 2017 in physics.comp-ph, math-ph, and math.MP

Abstract: In this paper, we generalize the normalized gradient flow method to compute the ground states of Bose-Einstein condensates (BEC) with higher order interactions (HOI), which is modelled via the modified Gross-Pitaevskii equation (MGPE). Schemes constructed in naive ways suffer from severe stability problems due to the high restrictions on time steps. To build an efficient and stable scheme, we split the HOI term into two parts with each part treated separately. The part corresponding to a repulsive/positive energy is treated semi-implicitly while the one corresponding to an attractive/negative energy is treated fully explicitly. Based on the splitting, we construct the BEFD-splitting and BESP-splitting schemes. A variety of numerical experiments shows that the splitting will improve the stability of the schemes significantly. Besides, we will show that the methods can be applied to multidimensional problems and to the computation of the first excited state as well.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)