Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Second Moment Phenomenon for Monochromatic Subgraphs (1711.01465v2)

Published 4 Nov 2017 in math.PR and math.CO

Abstract: What is the chance that among a group of $n$ friends, there are $s$ friends all of whom have the same birthday? This is the celebrated birthday problem which can be formulated as the existence of a monochromatic $s$-clique $K_s$ ($s$-matching birthdays) in the complete graph $K_n$, where every vertex of $K_n$ is uniformly colored with $365$ colors (corresponding to birthdays). More generally, for a general connected graph $H$, let $T(H, G_n)$ be the number of monochromatic copies of $H$ in a uniformly random coloring of the vertices of the graph $G_n$ with $c_n$ colors. In this paper we show that $T(H, G_n)$ converges to $\mathrm{Pois}(\lambda)$ whenever $\mathbb E T(H, G_n) \rightarrow \lambda$ and $\mathrm{Var} T(H, G_n) \rightarrow \lambda$, that is, the asymptotic Poisson distribution of $T(H, G_n)$ is determined just by the convergence of its mean and variance. Moreover, this condition is necessary if and only if $H$ is a star-graph. In fact, the second-moment phenomenon is a consequence of a more general theorem about the convergence of $T(H,G_n)$ to a finite linear combination of independent Poisson random variables. As an application, we derive the limiting distribution of $T(H, G_n)$, when $G_n\sim G(n, p)$ is the Erd\H os-R\'enyi random graph. Multiple phase-transitions emerge as $p$ varies from 0 to 1, depending on whether the graph $H$ is balanced or unbalanced.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.