On the isoperimetric constant, covariance inequalities and $L_p$-Poincaré inequalities in dimension one (1711.00668v3)
Abstract: Firstly, we derive in dimension one a new covariance inequality of $L_{1}-L_{\infty}$ type that characterizes the isoperimetric constant as the best constant achieving the inequality. Secondly, we generalize our result to $L_{p}-L_{q}$ bounds for the covariance. Consequently, we recover Cheeger's inequality without using the co-area formula. We also prove a generalized weighted Hardy type inequality that is needed to derive our covariance inequalities and that is of independent interest. Finally, we explore some consequences of our covariance inequalities for $L_{p}$-Poincar\'{e} inequalities and moment bounds. In particular, we obtain optimal constants in general $L_{p}$-Poincar\'{e} inequalities for measures with finite isoperimetric constant, thus generalizing in dimension one Cheeger's inequality, which is a $L_{p}$-Poincar\'{e} inequality for $p=2$, to any real $p\geq 1$.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.