Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data (1710.10364v3)

Published 28 Oct 2017 in math.AP, cs.LG, cs.NA, and math.NA

Abstract: We study the consistency of Lipschitz learning on graphs in the limit of infinite unlabeled data and finite labeled data. Previous work has conjectured that Lipschitz learning is well-posed in this limit, but is insensitive to the distribution of the unlabeled data, which is undesirable for semi-supervised learning. We first prove that this conjecture is true in the special case of a random geometric graph model with kernel-based weights. Then we go on to show that on a random geometric graph with self-tuning weights, Lipschitz learning is in fact highly sensitive to the distribution of the unlabeled data, and we show how the degree of sensitivity can be adjusted by tuning the weights. In both cases, our results follow from showing that the sequence of learned functions converges to the viscosity solution of an $\infty$-Laplace type equation, and studying the structure of the limiting equation.

Citations (60)

Summary

We haven't generated a summary for this paper yet.