Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuum Limit of Lipschitz Learning on Graphs (2012.03772v3)

Published 7 Dec 2020 in cs.LG, cs.NA, math.AP, math.NA, and stat.ML

Abstract: Tackling semi-supervised learning problems with graph-based methods has become a trend in recent years since graphs can represent all kinds of data and provide a suitable framework for studying continuum limits, e.g., of differential operators. A popular strategy here is $p$-Laplacian learning, which poses a smoothness condition on the sought inference function on the set of unlabeled data. For $p<\infty$ continuum limits of this approach were studied using tools from $\Gamma$-convergence. For the case $p=\infty$, which is referred to as Lipschitz learning, continuum limits of the related infinity-Laplacian equation were studied using the concept of viscosity solutions. In this work, we prove continuum limits of Lipschitz learning using $\Gamma$-convergence. In particular, we define a sequence of functionals which approximate the largest local Lipschitz constant of a graph function and prove $\Gamma$-convergence in the $L\infty$-topology to the supremum norm of the gradient as the graph becomes denser. Furthermore, we show compactness of the functionals which implies convergence of minimizers. In our analysis we allow a varying set of labeled data which converges to a general closed set in the Hausdorff distance. We apply our results to nonlinear ground states, i.e., minimizers with constrained $Lp$-norm, and, as a by-product, prove convergence of graph distance functions to geodesic distance functions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tim Roith (14 papers)
  2. Leon Bungert (35 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.