Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Folding approach to topological orders enriched by mirror symmetry (1710.09391v2)

Published 25 Oct 2017 in cond-mat.str-el, hep-th, math-ph, and math.MP

Abstract: We develop a folding approach to study two-dimensional symmetry-enriched topological (SET) phases with the mirror reflection symmetry. Our folding approach significantly transforms the mirror SETs, such that their properties can be conveniently studied through previously known tools: (i) it maps the nonlocal mirror symmetry to an onsite $\mathbb{Z}_2$ layer-exchange symmetry after folding the SET along the mirror axis, so that we can gauge the symmetry; (ii) it maps all mirror SET information into the boundary properties of the folded system, so that they can be studied by the anyon condensation theory---a general theory for studying gapped boundaries of topological orders; and (iii) it makes the mirror anomalies explicitly exposed in the boundary properties, i.e., strictly 2D SETs and those that can only live on the surface of a 3D system can be easily distinguished through the folding approach. With the folding approach, we derive a set of physical constraints on data that describes mirror SET, namely mirror permutation and mirror symmetry fractionalization on the anyon excitations in the topological order. We conjecture that these constraints may be complete, in the sense that all solutions are realizable in physical systems. Several examples are discussed to justify this. Previously known general results on the classification and anomalies are also reproduced through our approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.