Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Primes represented by positive definite binary quadratic forms (1710.08914v1)

Published 24 Oct 2017 in math.NT

Abstract: Let $f$ be a primitive positive definite integral binary quadratic form of discriminant $-D$ and let $\pi_f(x)$ be the number of primes up to $x$ which are represented by $f$. We prove several types of upper bounds for $\pi_f(x)$ within a constant factor of its asymptotic size: unconditional, conditional on the Generalized Riemann Hypothesis (GRH), and for almost all discriminants. The key feature of these estimates is that they hold whenever $x$ exceeds a small power of $D$ and, in some cases, this range of $x$ is essentially best possible. In particular, if $f$ is reduced then this optimal range of $x$ is achieved for almost all discriminants or by assuming GRH. We also exhibit an upper bound for the number of primes represented by $f$ in a short interval and a lower bound for the number of small integers represented by $f$ which have few prime factors.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)