Primes represented by positive definite binary quadratic forms (1710.08914v1)
Abstract: Let $f$ be a primitive positive definite integral binary quadratic form of discriminant $-D$ and let $\pi_f(x)$ be the number of primes up to $x$ which are represented by $f$. We prove several types of upper bounds for $\pi_f(x)$ within a constant factor of its asymptotic size: unconditional, conditional on the Generalized Riemann Hypothesis (GRH), and for almost all discriminants. The key feature of these estimates is that they hold whenever $x$ exceeds a small power of $D$ and, in some cases, this range of $x$ is essentially best possible. In particular, if $f$ is reduced then this optimal range of $x$ is achieved for almost all discriminants or by assuming GRH. We also exhibit an upper bound for the number of primes represented by $f$ in a short interval and a lower bound for the number of small integers represented by $f$ which have few prime factors.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.