Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Global Sensitivity Analysis via Multi-Fidelity Polynomial Chaos Expansion (1710.08072v1)

Published 23 Oct 2017 in stat.CO

Abstract: The presence of uncertainties are inevitable in engineering design and analysis, where failure in understanding their effects might lead to the structural or functional failure of the systems. The role of global sensitivity analysis in this aspect is to quantify and rank the effects of input random variables and their combinations to the variance of the random output. In problems where the use of expensive computer simulations are required, metamodels are widely used to speed up the process of global sensitivity analysis. In this paper, a multi-fidelity framework for global sensitivity analysis using polynomial chaos expansion (PCE) is presented. The goal is to accelerate the computation of Sobol sensitivity indices when the deterministic simulation is expensive and simulations with multiple levels of fidelity are available. This is especially useful in cases where a partial differential equation solver computer code is utilized to solve engineering problems. The multi-fidelity PCE is constructed by combining the low-fidelity and correction PCE. Following this step, the Sobol indices are computed using this combined PCE. The PCE coefficients for both low-fidelity and correction PCE are computed with spectral projection technique and sparse grid integration. In order to demonstrate the capability of the proposed method for sensitivity analysis, several simulations are conducted. On the aerodynamic example, the multi-fidelity approach is able to obtain an accurate value of Sobol indices with 36.66% computational cost compared to the standard single-fidelity PCE for a nearly similar accuracy.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.