Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multiplicative Structure in the Stable Splitting of $Ω SL_n(\mathbb{C})$ (1710.05366v2)

Published 15 Oct 2017 in math.AT, math.AG, and math.RT

Abstract: The space of based loops in $SL_n(\mathbb{C})$, also known as the affine Grassmannian of $SL_n(\mathbb{C})$, admits an $\mathbb{E}2$ or fusion product. Work of Mitchell and Richter proves that this based loop space stably splits as an infinite wedge sum. We prove that the Mitchell--Richter splitting is coherently multiplicative, but not $\mathbb{E}_2$. Nonetheless, we show that the splitting becomes $\mathbb{E}_2$ after base-change to complex cobordism. Our proof of the $\mathbb{A}\infty$ splitting involves on the one hand an analysis of the multiplicative properties of Weiss calculus, and on the other a use of Beilinson--Drinfeld Grassmannians to verify a conjecture of Mahowald and Richter. Other results are obtained by explicit, obstruction-theoretic computations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube