Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NeuroTrainer: An Intelligent Memory Module for Deep Learning Training (1710.04347v1)

Published 12 Oct 2017 in cs.AR

Abstract: This paper presents, NeuroTrainer, an intelligent memory module with in-memory accelerators that forms the building block of a scalable architecture for energy efficient training for deep neural networks. The proposed architecture is based on integration of a homogeneous computing substrate composed of multiple processing engines in the logic layer of a 3D memory module. NeuroTrainer utilizes a programmable data flow based execution model to optimize memory mapping and data re-use during different phases of training operation. A programming model and supporting architecture utilizes the flexible data flow to efficiently accelerate training of various types of DNNs. The cycle level simulation and synthesized design in 15nm FinFET showspower efficiency of 500 GFLOPS/W, and almost similar throughput for a wide range of DNNs including convolutional, recurrent, multi-layer-perceptron, and mixed (CNN+RNN) networks

Citations (1)

Summary

We haven't generated a summary for this paper yet.