Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neurostream: Scalable and Energy Efficient Deep Learning with Smart Memory Cubes (1701.06420v3)

Published 23 Jan 2017 in cs.AR and cs.ET

Abstract: High-performance computing systems are moving towards 2.5D and 3D memory hierarchies, based on High Bandwidth Memory (HBM) and Hybrid Memory Cube (HMC) to mitigate the main memory bottlenecks. This trend is also creating new opportunities to revisit near-memory computation. In this paper, we propose a flexible processor-in-memory (PIM) solution for scalable and energy-efficient execution of deep convolutional networks (ConvNets), one of the fastest-growing workloads for servers and high-end embedded systems. Our codesign approach consists of a network of Smart Memory Cubes (modular extensions to the standard HMC) each augmented with a many-core PIM platform called NeuroCluster. NeuroClusters have a modular design based on NeuroStream coprocessors (for Convolution-intensive computations) and general-purpose RISCV cores. In addition, a DRAM-friendly tiling mechanism and a scalable computation paradigm are presented to efficiently harness this computational capability with a very low programming effort. NeuroCluster occupies only 8% of the total logic-base (LoB) die area in a standard HMC and achieves an average performance of 240 GFLOPS for complete execution of full-featured state-of-the-art (SoA) ConvNets within a power budget of 2.5W. Overall 11 W is consumed in a single SMC device, with 22.5 GFLOPS/W energy-efficiency which is 3.5X better than the best GPU implementations in similar technologies. The minor increase in system-level power and the negligible area increase make our PIM system a cost-effective and energy efficient solution, easily scalable to 955 GFLOPS with a small network of just four SMCs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Erfan Azarkhish (2 papers)
  2. Davide Rossi (69 papers)
  3. Igor Loi (5 papers)
  4. Luca Benini (362 papers)
Citations (94)

Summary

We haven't generated a summary for this paper yet.