Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta Inverse Reinforcement Learning via Maximum Reward Sharing for Human Motion Analysis (1710.03592v2)

Published 7 Oct 2017 in cs.AI

Abstract: This work handles the inverse reinforcement learning (IRL) problem where only a small number of demonstrations are available from a demonstrator for each high-dimensional task, insufficient to estimate an accurate reward function. Observing that each demonstrator has an inherent reward for each state and the task-specific behaviors mainly depend on a small number of key states, we propose a meta IRL algorithm that first models the reward function for each task as a distribution conditioned on a baseline reward function shared by all tasks and dependent only on the demonstrator, and then finds the most likely reward function in the distribution that explains the task-specific behaviors. We test the method in a simulated environment on path planning tasks with limited demonstrations, and show that the accuracy of the learned reward function is significantly improved. We also apply the method to analyze the motion of a patient under rehabilitation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kun Li (194 papers)
  2. Joel W. Burdick (60 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.