Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse Reinforce Learning with Nonparametric Behavior Clustering (1712.05514v1)

Published 15 Dec 2017 in cs.AI

Abstract: Inverse Reinforcement Learning (IRL) is the task of learning a single reward function given a Markov Decision Process (MDP) without defining the reward function, and a set of demonstrations generated by humans/experts. However, in practice, it may be unreasonable to assume that human behaviors can be explained by one reward function since they may be inherently inconsistent. Also, demonstrations may be collected from various users and aggregated to infer and predict user's behaviors. In this paper, we introduce the Non-parametric Behavior Clustering IRL algorithm to simultaneously cluster demonstrations and learn multiple reward functions from demonstrations that may be generated from more than one behaviors. Our method is iterative: It alternates between clustering demonstrations into different behavior clusters and inverse learning the reward functions until convergence. It is built upon the Expectation-Maximization formulation and non-parametric clustering in the IRL setting. Further, to improve the computation efficiency, we remove the need of completely solving multiple IRL problems for multiple clusters during the iteration steps and introduce a resampling technique to avoid generating too many unlikely clusters. We demonstrate the convergence and efficiency of the proposed method through learning multiple driver behaviors from demonstrations generated from a grid-world environment and continuous trajectories collected from autonomous robot cars using the Gazebo robot simulator.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Siddharthan Rajasekaran (3 papers)
  2. Jinwei Zhang (32 papers)
  3. Jie Fu (229 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.