Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A complete characterization of exponential stability for discrete dynamics (1710.02191v1)

Published 5 Oct 2017 in math.DS

Abstract: For a discrete dynamics defined by a sequence of bounded and not necessarily invertible linear operators, we give a complete characterization of exponential stability in terms of invertibility of a certain operator acting on suitable Banach sequence spaces. We connect the invertibility of this operator to the existence of a particular type of admissible exponents. For the bounded orbits, exponential stability results from a spectral property. Some adequate examples are presented to emphasize some significant qualitative differences between uniform and nonuniform behavior.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.