Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Effective Use of Pretraining for Natural Language Inference (1710.02076v1)

Published 5 Oct 2017 in cs.CL

Abstract: Neural networks have excelled at many NLP tasks, but there remain open questions about the performance of pretrained distributed word representations and their interaction with weight initialization and other hyperparameters. We address these questions empirically using attention-based sequence-to-sequence models for natural language inference (NLI). Specifically, we compare three types of embeddings: random, pretrained (GloVe, word2vec), and retrofitted (pretrained plus WordNet information). We show that pretrained embeddings outperform both random and retrofitted ones in a large NLI corpus. Further experiments on more controlled data sets shed light on the contexts for which retrofitted embeddings can be useful. We also explore two principled approaches to initializing the rest of the model parameters, Gaussian and orthogonal, showing that the latter yields gains of up to 2.9% in the NLI task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ignacio Cases (11 papers)
  2. Minh-Thang Luong (32 papers)
  3. Christopher Potts (113 papers)
Citations (6)