Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Asymptotic analysis of a multiclass queueing control problem under heavy-traffic with model uncertainty (1710.00968v2)

Published 3 Oct 2017 in math.PR

Abstract: We study a multiclass M/M/1 queueing control problem with finite buffers under heavy-traffic where the decision maker is uncertain about the rates of arrivals and service of the system and by scheduling and admission/rejection decisions acts to minimize a discounted cost that accounts for the uncertainty. The main result is the asymptotic optimality of a $c\mu$-type of policy derived via underlying stochastic differential games studied in [16]. Under this policy, with high probability, rejections are not performed when the workload lies below some cut-off that depends on the ambiguity level. When the workload exceeds this cut-off, rejections are carried out and only from the buffer with the cheapest rejection cost weighted with the mean service rate in some reference model. The allocation part of the policy is the same for all the ambiguity levels. This is the first work to address a heavy-traffic queueing control problem with model uncertainty.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)