Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GP-GAN: Gender Preserving GAN for Synthesizing Faces from Landmarks (1710.00962v2)

Published 3 Oct 2017 in cs.CV

Abstract: Facial landmarks constitute the most compressed representation of faces and are known to preserve information such as pose, gender and facial structure present in the faces. Several works exist that attempt to perform high-level face-related analysis tasks based on landmarks. In contrast, in this work, an attempt is made to tackle the inverse problem of synthesizing faces from their respective landmarks. The primary aim of this work is to demonstrate that information preserved by landmarks (gender in particular) can be further accentuated by leveraging generative models to synthesize corresponding faces. Though the problem is particularly challenging due to its ill-posed nature, we believe that successful synthesis will enable several applications such as boosting performance of high-level face related tasks using landmark points and performing dataset augmentation. To this end, a novel face-synthesis method known as Gender Preserving Generative Adversarial Network (GP-GAN) that is guided by adversarial loss, perceptual loss and a gender preserving loss is presented. Further, we propose a novel generator sub-network UDeNet for GP-GAN that leverages advantages of U-Net and DenseNet architectures. Extensive experiments and comparison with recent methods are performed to verify the effectiveness of the proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xing Di (18 papers)
  2. Vishwanath A. Sindagi (21 papers)
  3. Vishal M. Patel (230 papers)
Citations (46)