Particle scattering and vacuum instability by exponential steps (1709.06997v2)
Abstract: Particle scattering and vacuum instability in a constant inhomogeneous electric field of particular peak configuration that consists of two (exponentially increasing and exponentially decreasing) independent parts are studied. It presents a new kind of external field where exact solutions of the Dirac and Klein-Gordon equations can be found. We obtain and analyze in- and out-solutions of the Dirac and Klein-Gordon equations in this configuration. By their help we calculate probabilities of particle scattering and characteristics of the vacuum instability. In particular, we consider in details three configurations: a smooth peak, a sharp peak, and a strongly asymmetric peak configuration. We find asymptotic expressions for total mean numbers of created particles and for vacuum-to-vacuum transition probability. We discuss a new regularization of the Klein step by the sharp peak and compare this regularization with another one given by the Sauter potential.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.