Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A symplectic perspective on constrained eigenvalue problems (1709.06906v1)

Published 20 Sep 2017 in math.SP and math.AP

Abstract: The Maslov index is a powerful tool for computing spectra of selfadjoint, elliptic boundary value problems. This is done by counting intersections of a fixed Lagrangian subspace, which designates the boundary condition, with the set of Cauchy data for the differential operator. We apply this methodology to constrained eigenvalue problems, in which the operator is restricted to a (not necessarily invariant) subspace. The Maslov index is defined and used to compute the Morse index of the constrained operator. We then prove a constrained Morse index theorem, which says that the Morse index of the constrained problem equals the number of constrained conjugate points, counted with multiplicity, and give an application to the nonlinear Schr\"odinger equation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.