Papers
Topics
Authors
Recent
2000 character limit reached

Paraphrasing verbal metonymy through computational methods

Published 18 Sep 2017 in cs.CL | (1709.06162v1)

Abstract: Verbal metonymy has received relatively scarce attention in the field of computational linguistics despite the fact that a model to accurately paraphrase metonymy has applications both in academia and the technology sector. The method described in this paper makes use of data from the British National Corpus in order to create word vectors, find instances of verbal metonymy and generate potential paraphrases. Two different ways of creating word vectors are evaluated in this study: Continuous bag of words and Skip-grams. Skip-grams are found to outperform the Continuous bag of words approach. Furthermore, the Skip-gram model is found to operate with better-than-chance accuracy and there is a strong positive relationship (phi coefficient = 0.61) between the model's classification and human judgement of the ranked paraphrases. This study lends credence to the viability of modelling verbal metonymy through computational methods based on distributional semantics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.