Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fuzzy paraphrases in learning word representations with a lexicon (1611.00674v9)

Published 2 Nov 2016 in cs.CL

Abstract: A synonym of a polysemous word is usually only the paraphrase of one sense among many. When lexicons are used to improve vector-space word representations, such paraphrases are unreliable and bring noise to the vector-space. The prior works use a coefficient to adjust the overall learning of the lexicons. They regard the paraphrases equally. In this paper, we propose a novel approach that regards the paraphrases diversely to alleviate the adverse effects of polysemy. We annotate each paraphrase with a degree of reliability. The paraphrases are randomly eliminated according to the degrees when our model learns word representations. In this way, our approach drops the unreliable paraphrases, keeping more reliable paraphrases at the same time. The experimental results show that the proposed method improves the word vectors. Our approach is an attempt to address the polysemy problem keeping one vector per word. It makes the approach easier to use than the conventional methods that estimate multiple vectors for a word. Our approach also outperforms the prior works in the experiments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yuanzhi Ke (4 papers)
  2. Masafumi Hagiwara (5 papers)