Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Projective Crystalline Representations of Étale Fundamental Groups and Twisted Periodic Higgs-de Rham Flow (1709.01485v3)

Published 5 Sep 2017 in math.AG and math.NT

Abstract: This paper contains three new results. {\bf 1}.We introduce new notions of projective crystalline representations and twisted periodic Higgs-de Rham flows. These new notions generalize crystalline representations of \'etale fundamental groups introduced in [7,10] and periodic Higgs-de Rham flows introduced in [19]. We establish an equivalence between the categories of projective crystalline representations and twisted periodic Higgs-de Rham flows via the category of twisted Fontaine-Faltings module which is also introduced in this paper. {\bf 2.}We study the base change of these objects over very ramified valuation rings and show that a stable periodic Higgs bundle gives rise to a geometrically absolutely irreducible crystalline representation. {\bf 3.} We investigate the dynamic of self-maps induced by the Higgs-de Rham flow on the moduli spaces of rank-2 stable Higgs bundles of degree 1 on $\mathbb{P}1$ with logarithmic structure on marked points $D:={x_1,\,...,x_n}$ for $n\geq 4$ and construct infinitely many geometrically absolutely irreducible $\mathrm{PGL_2}(\mathbb Z_p{\mathrm{ur}})$-crystalline representations of $\pi_1\text{et}(\mathbb{P}1_{{\mathbb{Q}}_p\text{ur}}\setminus D)$. We find an explicit formula of the self-map for the case ${0,\,1,\,\infty,\,\lambda}$ and conjecture that a Higgs bundle is periodic if and only if the zero of the Higgs field is the image of a torsion point in the associated elliptic curve $\mathcal{C}_\lambda$ defined by $ y2=x(x-1)(x-\lambda)$ with the order coprime to $p$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.