Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autonomous Waypoint Generation with Safety Guarantees: On-Line Motion Planning in Unknown Environments (1709.00546v1)

Published 2 Sep 2017 in cs.RO

Abstract: On-line motion planning in unknown environments is a challenging problem as it requires (i) ensuring collision avoidance and (ii) minimizing the motion time, while continuously predicting where to go next. Previous approaches to on-line motion planning assume that a rough map of the environment is available, thereby simplifying the problem. This paper presents a reactive on-line motion planner, Robust Autonomous Waypoint generation (RAW), for mobile robots navigating in unknown and unstructured environments. RAW generates a locally maximal ellipsoid around the robot, using semi-definite programming, such that the surrounding obstacles lie outside the ellipsoid. A reinforcement learning agent then generates a local waypoint in the robot's field of view, inside the ellipsoid. The robot navigates to the waypoint and the process iterates until it reaches the goal. By following the waypoints the robot navigates through a sequence of overlapping ellipsoids, and avoids collision. Robot's safety is guaranteed theoretically and the claims are validated through rigorous numerical experiments in four different experimental setups. Near-optimality is shown empirically by comparing RAW trajectories with the global optimal trajectories.

Citations (5)

Summary

We haven't generated a summary for this paper yet.