Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computing Puiseux series : a fast divide and conquer algorithm (1708.09067v2)

Published 30 Aug 2017 in math.AG

Abstract: Let $F\in \mathbb{K}[X, Y ]$ be a polynomial of total degree $D$ defined over a perfect field $\mathbb{K}$ of characteristic zero or greater than $D$. Assuming $F$ separable with respect to $Y$ , we provide an algorithm that computes the singular parts of all Puiseux series of $F$ above $X = 0$ in less than $\tilde{\mathcal{O}}(D\delta)$ operations in $\mathbb{K}$, where $\delta$ is the valuation of the resultant of $F$ and its partial derivative with respect to $Y$. To this aim, we use a divide and conquer strategy and replace univariate factorization by dynamic evaluation. As a first main corollary, we compute the irreducible factors of $F$ in $\mathbb{K}[[X]][Y ]$ up to an arbitrary precision $XN$ with $\tilde{\mathcal{O}}(D(\delta + N ))$ arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by $F$ with $\tilde{\mathcal{O}}(D3)$ arithmetic operations and, if $\mathbb{K} = \mathbb{Q}$, with $\tilde{\mathcal{O}}((h+1)D3)$ bit operations using a probabilistic algorithm, where $h$ is the logarithmic heigth of $F$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.