Finite element approximation of steady flows of generalized Newtonian fluids with concentration-dependent power-law index (1708.07830v1)
Abstract: We consider a system of nonlinear partial differential equations describing the motion of an incompressible chemically reacting generalized Newtonian fluid in three space dimensions. The governing system consists of a steady convection-diffusion equation for the concentration and a generalized steady power-law-type fluid flow model for the velocity and the pressure, where the viscosity depends on both the shear-rate and the concentration through a concentration-dependent power-law index. The aim of the paper is to perform a mathematical analysis of a finite element approximation of this model. We formulate a regularization of the model by introducing an additional term in the conservation-of-momentum equation and construct a finite element approximation of the regularized system. We show the convergence of the finite element method to a weak solution of the regularized model and prove that weak solutions of the regularized problem converge to a weak solution of the original problem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.