Papers
Topics
Authors
Recent
Search
2000 character limit reached

Finite element approximation of steady flows of generalized Newtonian fluids with concentration-dependent power-law index

Published 26 Aug 2017 in math.NA | (1708.07830v1)

Abstract: We consider a system of nonlinear partial differential equations describing the motion of an incompressible chemically reacting generalized Newtonian fluid in three space dimensions. The governing system consists of a steady convection-diffusion equation for the concentration and a generalized steady power-law-type fluid flow model for the velocity and the pressure, where the viscosity depends on both the shear-rate and the concentration through a concentration-dependent power-law index. The aim of the paper is to perform a mathematical analysis of a finite element approximation of this model. We formulate a regularization of the model by introducing an additional term in the conservation-of-momentum equation and construct a finite element approximation of the regularized system. We show the convergence of the finite element method to a weak solution of the regularized model and prove that weak solutions of the regularized problem converge to a weak solution of the original problem.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.