Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exact Solution of the Two-Dimensional Scattering Problem for a Class of $δ$-Function Potentials Supported on Subsets of a Line (1708.06003v1)

Published 20 Aug 2017 in quant-ph, math-ph, and math.MP

Abstract: We use the transfer matrix formulation of scattering theory in two-dimensions to treat the scattering problem for a potential of the form $v(x,y)=\zeta\,\delta(ax+by)g(bx-ay)$ where $\zeta,a$, and $b$ are constants, $\delta(x)$ is the Dirac $\delta$ function, and $g$ is a real- or complex-valued function. We map this problem to that of $v(x,y)=\zeta\,\delta(x)g(y)$ and give its exact and analytic solution for the following choices of $g(y)$: i) A linear combination of $\delta$-functions, in which case $v(x,y)$ is a finite linear array of two-dimensional $\delta$-functions; ii) A linear combination of $e{i\alpha_n y}$ with $\alpha_n$ real; iii) A general periodic function that has the form of a complex Fourier series. In particular we solve the scattering problem for a potential consisting of an infinite linear periodic array of two-dimensional $\delta$-functions. We also prove a general theorem that gives a sufficient condition for different choices of $g(y)$ to produce the same scattering amplitude within specific ranges of values of the wavelength $\lambda$. For example, we show that for arbitrary real and complex parameters, $a$ and $\mathfrak{z}$, the potentials $ \mathfrak{z} \sum_{n=-\infty}\infty\delta(x)\delta(y-an)$ and $a{-1}\mathfrak{z}\delta(x)[1+2\cos(2\pi y/a)]$ have the same scattering amplitude for $a< \lambda\leq 2a$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.