Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Fixed-Rank Nyström Approximation via QR Decomposition: Practical and Theoretical Aspects (1708.03218v2)

Published 8 Aug 2017 in stat.ML, cs.CV, and cs.LG

Abstract: The Nystrom method is a popular technique that uses a small number of landmark points to compute a fixed-rank approximation of large kernel matrices that arise in machine learning problems. In practice, to ensure high quality approximations, the number of landmark points is chosen to be greater than the target rank. However, for simplicity the standard Nystrom method uses a sub-optimal procedure for rank reduction. In this paper, we examine the drawbacks of the standard Nystrom method in terms of poor performance and lack of theoretical guarantees. To address these issues, we present an efficient modification for generating improved fixed-rank Nystrom approximations. Theoretical analysis and numerical experiments are provided to demonstrate the advantages of the modified method over the standard Nystrom method. Overall, the aim of this paper is to convince researchers to use the modified method, as it has nearly identical computational complexity, is easy to code, has greatly improved accuracy in many cases, and is optimal in a sense that we make precise.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Farhad Pourkamali-Anaraki (22 papers)
  2. Stephen Becker (63 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.