Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simplified Energy Landscape for Modularity Using Total Variation (1707.09285v3)

Published 28 Jul 2017 in math.OC and stat.ML

Abstract: Networks capture pairwise interactions between entities and are frequently used in applications such as social networks, food networks, and protein interaction networks, to name a few. Communities, cohesive groups of nodes, often form in these applications, and identifying them gives insight into the overall organization of the network. One common quality function used to identify community structure is modularity. In Hu et al. [SIAM J. App. Math., 73(6), 2013], it was shown that modularity optimization is equivalent to minimizing a particular nonconvex total variation (TV) based functional over a discrete domain. They solve this problem, assuming the number of communities is known, using a Merriman, Bence, Osher (MBO) scheme. We show that modularity optimization is equivalent to minimizing a convex TV-based functional over a discrete domain, again, assuming the number of communities is known. Furthermore, we show that modularity has no convex relaxation satisfying certain natural conditions. We therefore, find a manageable non-convex approximation using a Ginzburg Landau functional, which provably converges to the correct energy in the limit of a certain parameter. We then derive an MBO algorithm with fewer hand-tuned parameters than in Hu et al. and which is 7 times faster at solving the associated diffusion equation due to the fact that the underlying discretization is unconditionally stable. Our numerical tests include a hyperspectral video whose associated graph has 2.9x107 edges, which is roughly 37 times larger than was handled in the paper of Hu et al.

Citations (20)

Summary

We haven't generated a summary for this paper yet.