Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Method Based on Total Variation for Network Modularity Optimization using the MBO Scheme (1304.4679v1)

Published 17 Apr 2013 in cs.SI, math.OC, and physics.soc-ph

Abstract: The study of network structure is pervasive in sociology, biology, computer science, and many other disciplines. One of the most important areas of network science is the algorithmic detection of cohesive groups of nodes called "communities". One popular approach to find communities is to maximize a quality function known as {\em modularity} to achieve some sort of optimal clustering of nodes. In this paper, we interpret the modularity function from a novel perspective: we reformulate modularity optimization as a minimization problem of an energy functional that consists of a total variation term and an $\ell_2$ balance term. By employing numerical techniques from image processing and $\ell_1$ compressive sensing -- such as convex splitting and the Merriman-Bence-Osher (MBO) scheme -- we develop a variational algorithm for the minimization problem. We present our computational results using both synthetic benchmark networks and real data.

Citations (55)

Summary

We haven't generated a summary for this paper yet.