Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unifying Framework for Accelerated Randomized Methods in Convex Optimization (1707.08486v2)

Published 26 Jul 2017 in math.OC, cs.NA, and math.NA

Abstract: In this paper, we consider smooth convex optimization problems with simple constraints and inexactness in the oracle information such as value, partial or directional derivatives of the objective function. We introduce a unifying framework, which allows to construct different types of accelerated randomized methods for such problems and to prove convergence rate theorems for them. We focus on accelerated random block-coordinate descent, accelerated random directional search, accelerated random derivative-free method and, using our framework, provide their versions for problems with inexact oracle information. Our contribution also includes accelerated random block-coordinate descent with inexact oracle and entropy proximal setup as well as derivative-free version of this method. Moreover, we present an extension of our framework for strongly convex optimization problems. We also discuss an extension for the case of inexact model of the objective function.

Citations (32)

Summary

We haven't generated a summary for this paper yet.