Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Sequence learning in Associative Neuronal-Astrocytic Network (1707.05649v2)

Published 16 Jul 2017 in q-bio.NC

Abstract: The neuronal paradigm of studying the brain has left us with limitations in both our understanding of how neurons process information to achieve biological intelligence and how such knowledge may be translated into artificial intelligence and its most brain-derived branch, neuromorphic computing. Overturning our fundamental assumptions of how the brain works, the recent exploration of astrocytes is revealing that these long-neglected brain cells dynamically regulate learning by interacting with neuronal activity at the synaptic level. Following recent experimental evidence, we designed an associative, Hopfield-type, neuronal-astrocytic network and analyzed the dynamics of the interaction between neurons and astrocytes. We show that astrocytes were sufficient to trigger transitions between learned memories in the neuronal component of the network. Further, we mathematically derived the timing of the transitions that was governed by the dynamics of the calcium-dependent slow-currents in the astrocytic processes. Overall, we provide a brain-morphic mechanism for sequence learning that is inspired by, and aligns with, recent experimental findings. To evaluate our model, we emulated astrocytic atrophy and showed that memory recall becomes significantly impaired after a critical point of affected astrocytes was reached. This brain-inspired and brain-validated approach supports our ongoing efforts to incorporate non-neuronal computing elements in neuromorphic information processing.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.