Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Harmonic measure for biased random walk in a supercritical Galton-Watson tree (1707.01811v4)

Published 6 Jul 2017 in math.PR

Abstract: We consider random walks $\lambda$-biased towards the root on a Galton-Watson tree, whose offspring distribution $(p_k)_{k\geq 1}$ is non-degenerate and has finite mean $m>1$. In the transient regime $0<\lambda<m$, the loop-erased trajectory of the biased random walk defines the $\lambda$-harmonic ray, whose law is the $\lambda$-harmonic measure on the boundary of the Galton-Watson tree. We answer a question of Lyons, Pemantle and Peres by showing that the $\lambda$-harmonic measure has a.s. strictly larger Hausdorff dimension than the visibility measure, which is the harmonic measure corresponding to the simple forward random walk. We also prove that the average number of children of the vertices along the $\lambda$-harmonic ray is a.s. bounded below by $m$ and bounded above by $m{-1}\sum k2 p_k$. Moreover, at least for $0<\lambda \leq 1$, the average number of children of the vertices along the $\lambda$-harmonic ray is a.s. strictly larger than that of the $\lambda$-biased random walk trajectory. We observe that the latter is not monotone in the bias parameter $\lambda$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)