Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal percolation on multiplex networks

Published 5 Jul 2017 in physics.soc-ph and cs.SI | (1707.01401v1)

Abstract: Optimal percolation is the problem of finding the minimal set of nodes such that if the members of this set are removed from a network, the network is fragmented into non-extensive disconnected clusters. The solution of the optimal percolation problem has direct applicability in strategies of immunization in disease spreading processes, and influence maximization for certain classes of opinion dynamical models. In this paper, we consider the problem of optimal percolation on multiplex networks. The multiplex scenario serves to realistically model various technological, biological, and social networks. We find that the multilayer nature of these systems, and more precisely multiplex characteristics such as edge overlap and interlayer degree-degree correlation, profoundly changes the properties of the set of nodes identified as the solution of the optimal percolation problem.

Citations (90)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.